WEEKLY TEST TYJ-01 R \& B SOLUTION 17 AUGUST 2019

PHYSICS

1. (d) Application of Bernoulli's theorem.
2. (c)
3. (b) $\mathrm{F}=\sqrt{(\mathrm{F})^{2}+(\mathrm{F})^{2}+2 \mathrm{~F} . \mathrm{F} \cos \theta} \Rightarrow \theta=120^{\circ}$
4. (d) Range of resultant of F_{1} and F_{2} varies between $(3+5)=8 \mathrm{~N}$ and $(5-3)=2 \mathrm{~N}$. It means for some value of angle (θ), resultant 6 can be obtained. So, the resultant of $3 \mathrm{~N}, 5 \mathrm{~N}$ and 6 N may be zero and the forces may be in equilibrium
5. (a) FBD of mass 2 kg FBD of mass 4 kg

$\mathrm{T}-\mathrm{T}^{\prime}-20=4 \quad \ldots .(\mathrm{i}) \quad \mathrm{T}^{\prime}-40=8$
By solving (i) and (ii) $\mathrm{T}^{\prime}=47.23 \mathrm{~N}$ and $\mathrm{T}=70.8 \mathrm{~N}$
6. (a)
7. (b) $|\overrightarrow{\mathrm{F}}|=\sqrt{5^{2}+5^{2}}=5 \sqrt{2} \mathrm{~N}$.

8. (c)

Acceleration of the system $=\frac{P}{m+M}$
The force exerted by rope on the mass $=\frac{M P}{m+M}$
9. (c) Acceleration $=\frac{\left(m_{2}-m_{1}\right)}{\left(m_{2}+m_{1}\right)} 9$
$=\frac{4-3}{4+3} \times 9.8=\frac{9.8}{7}=1.4 \mathrm{~m} / \mathrm{sec}^{2}$
10. (a) Acceleration $=\frac{m_{2}}{m_{1}+m_{2}} \times g=\frac{1}{2+1} \times 9.8=3.27 \mathrm{~m} / \mathrm{s}^{2}$
and $T=m_{1} a=2 \times 3.27=6.54 \mathrm{~N}$
11. (d) $\mathrm{T}=\frac{2 \mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \mathrm{~g}=\frac{2 \times 10 \times 6}{10+6} \times 9.8=73.5 \mathrm{~N}$
12. (b) $a=\frac{m_{2}}{m_{1}+m_{2}} g=\frac{3}{7+3} 10=3 \mathrm{~m} / \mathrm{s}^{2}$
13. (c) $T_{1}=\left(\frac{m_{2}+m_{3}}{m_{1}+m_{2}+m_{3}}\right) g=\frac{3+5}{2+3+5} \times 10=8 \mathrm{~N}$
14. (C) $\mathrm{T} \sin 30=2 \mathrm{~kg} w t$ $\Rightarrow \mathrm{T}=4 \mathrm{~kg} \mathrm{wt}$
$\mathrm{T}_{1}=\mathrm{T} \cos 30^{\circ}$
$=4 \cos 30^{\circ}$
$=2 \sqrt{3}$
15. (b) $\mathrm{a}=\left(\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right) g \Rightarrow \frac{g}{8}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g \Rightarrow \frac{m_{1}}{m_{2}}=\frac{9}{7}$

MATHEMATICS

31. (a) Sum of the digits in the unit place is $6(2+4+6+8)=120$ units. Similarly, sum of digits in ten place is 120 tens and in hundredth place is 120 hundreds etc. Sum of all the 24 numbers is $120\left(1+10+10^{2}+10^{3}\right)=120 \times 1111=133320$.
32. (b) Extreme left place can be filled in 6 ways, the middle place can be filled in 6 ways and extreme right place in only 3 ways.
(\because number to be formed is odd)
\therefore Required number of numbers $=6 \times 6 \times 3=108$.
33. (b) Numbers greater than 1000 and less than or equal to 4000 will be of 4 digits and will have either 1 (except 1000) or 2 or 3 in the first place with 0 in each of remaining places.

After fixing $1^{\text {st }}$ place, the second place can be filled by any of the 5 numbers. Similarly third place can be filled up in 5 ways and $4^{\text {th }}$ place can be filled up in 5 ways. Thus there will be $5 \times 5 \times 5=125$ ways in which 1 will be in first place but this include 1000 also hence there will be 124 numbers having 1 in the first place. Similarly 125 for each 2 or 3 . One number will be in which 4 in the first place and i.e. 4000 . Hence the required numbers are $124+125+125+1=375$ ways.
34. (d) Using the digits $0,1,2, \ldots . ., 9$ the number of five digit telephone numbers which can be formed is 10^{5} (since repetition is allowed)
The number of five digit telephone, numbers which have none of the digits repeated $={ }^{10} \mathrm{P}_{5}=30240$.
\therefore The required number of telephone numbers
$=10^{5}-30240=69760$.
35. (c) Words start with D are $6!=720$, start with E are 720 , start with MD are $5!=120$ and start with ME are 120 . Now the first word starts with MO is nothing but MODESTY. H ence rank of MODESTY is 1681.
36. (a) Total no. of permutations $=\frac{6!}{3!2!}=60$.
37. (b) Numbers which are divisible by 5 have ' 5 ' fixed in extreme right place
3 Digit Numbers

4 Digit Numbers

H	T	U	Th	H	T	U
\times	\times	5	\times	\times	\times	5
${ }^{3} \mathrm{P}_{2}$ ways			${ }^{3} \mathrm{P}_{3}$ ways			

38. (c) Out of 7 places, 4 places are odd and 3 even. Therefore 3 vowels can be arranged in 3 even places in ${ }^{3} P_{3}$ ways and remaining 4 consonants can be arranged in 4 odd places in ${ }^{4} \mathrm{P}_{4}$ ways.
Hence required no. of ways $={ }^{3} \mathrm{P}_{3} \times{ }^{4} \mathrm{P}_{4}=144$.
39. (b) Fix up 1 man and the remaining 6 men can be seated in 6 ! ways. Now no two women are to sit together and as such the 7 women are to be arranged in seven empty seats between two consecutive men and number of arrangement will be $7!$. Hence by fundamental theorem the total number of ways $=7!\times 6!$.
40. (d) $n^{2}-n C_{2}={ }^{n^{2}-n} C_{10} \Rightarrow{ }^{n^{2}-n} C_{n^{2}-n-2}={ }^{n^{2}-n} C_{10}$ $\Rightarrow \mathrm{n}^{2}-\mathrm{n}-2=10$ or $\mathrm{n}=4,-3$.
41. (a) ${ }^{15} \mathrm{C}_{3}+{ }^{15} \mathrm{C}_{13}={ }^{15} \mathrm{C}_{3}+{ }^{15} \mathrm{C}_{2}={ }^{16} \mathrm{C}_{3}$.
42. (c) Required number of ways $={ }^{8} \mathrm{C}_{1}+{ }^{8} \mathrm{C}_{2}+{ }^{8} \mathrm{C}_{3}+{ }^{8} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{5}$
$=8+28+56+70+56=218$
\{Since voter may vote to one, two, three, four or all candidates\}.
43. (b) At least one green ball can be selected out of 5 green balls in $2^{5}-1$ i.e., in 31 ways. Similarly at least one blue ball can be selected from 4 blue balls in $2^{4}-1=15$ ways. And at least one red or not red can be select in $2^{3}=8$ ways.
Hence required number of ways $=31 \times 15 \times 8=3720$.
44. (b) ${ }^{14} \mathrm{C}_{4}+{ }^{14} \mathrm{C}_{3}+{ }^{15} \mathrm{C}_{3}+{ }^{16} \mathrm{C}_{3}+{ }^{17} \mathrm{C}_{3}={ }^{18} \mathrm{C}_{4}$.
45. (a) Number of words of 5 letters in which letters have been repeated any times $=10^{5}$

But number of words on taking 5 different letters out of $10={ }^{10} \mathrm{C}_{5}=252$
\therefore Required number of words $=10^{5}-252=99748$.

